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1. Introduction

Mal’tsev categories have been defined in [4] as finitely complete categories
in which every binary relation is difunctional. This generalises the notion
of a regular Mal’tsev category from [3]. A variety of universal algebras is a
Mal’tsev category if and only if its corresponding theory contains a ternary
term p(x, y, z) satisfying the identities p(x, x, y) = y = p(y, x, x) [13].
There are many characterisations of Mal’tsev categories in the literature. For
instance, a finitely complete category is a Mal’tsev category if and only if,
for any pullback of split epimorphisms,

P // //

����

Y

����

rYoo

X // //

lX

OO

Zoo

OO

the induced morphisms lX and rY are jointly strongly epimorphic [2]. In
[15], N. Martins-Ferreira generalises this notion defining a weakly Mal’tsev
category as a category in which the pullbacks as above exist and the mor-
phisms lX and rY are jointly epimorphic.

For a small category C, the full Yoneda embedding C → SetC
op

preser-
ves limits. This allows one to reduce the proofs of some statements about
limits in any category to the particular case of Set, the category of sets. The
aim of this paper is to construct a weakly Mal’tsev category M for which, if
C is a small weakly Mal’tsev finitely complete category, the Yoneda embed-
ding factors through MCop .

MCop

��

C
Y
//

φ
<<

SetC
op

This functor φ is a full and faithful embedding which preserves and reflects
finite limits. Up to a change of universe, it is then enough to prove some sta-
tements about finite limits in M in order to prove them in all weakly Mal’tsev
finitely complete categories.

An object in this category M is a set A equipped with a partial operation
p : A3 → A which is defined (at least) for all triples of the form (x, x, y) and
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(y, x, x) and which satisfies the axioms p(x, x, y) = y = p(y, x, x). A homo-
morphism between such partial Mal’tsev algebras is a function f : A → B
such that, if p(x, y, z) ∈ A is defined, then p(f(x), f(y), f(z)) ∈ B is also
defined and equal to f(p(x, y, z)). In general, they fail to satisfy the con-
verse property: if p(f(x), f(y), f(z)) is defined in B, then p(x, y, z) is de-
fined in A. Homomorphisms satisfying this additional property are said to
be closed [7] (also called strong homomorphisms in [6]). We prove that the
monomorphisms in M are exactly the injective homomorphisms and strong
monomorphisms are exactly the injective closed homomorphisms. With this
notion of a closed monomorphism, we get a similar embedding theorem for
Mal’tsev categories: any small Mal’tsev category C admits a full and faithful
embedding φ : C→MCop which preserves and reflects finite limits and such
that for each monomorphism f and each object X ∈ Cop, φ(f)X is a closed
monomorphism.

In [8], an embedding theorem for the smaller collection of regular
Mal’tsev categories has been proved. More precisely, a regular Mal’tsev
category M′ has been constructed such that each small regular Mal’tsev ca-
tegory has a regular conservative embedding into a power of M′. That cate-
gory M′ is also constructed using a partial ternary operation p satisfying the
Mal’tsev identities. But one of the main differences between the embedding
theorem of [8] and the ones of this paper is the fact that, in M′, the domain
of definition of p is determined as the solution set of some totally defined
equation. Therefore, all monomorphisms in M′ are closed, which is not the
case in M.

In order to establish at the same time embedding theorems for weakly
Mal’tsev, Mal’tsev, weakly unital [14], unital [2], strongly unital [2] and
subtractive [9] categories, we use the ‘matrix conditions’ introduced in [10].
For each extended matrix M of terms in a commutative algebraic theory, we
construct the category of partial M -algebras PartM (being M when M is
the Mal’tsev matrix). This category PartM has M -closed strong relations,
its monomorphisms are exactly the injective homomorphisms and its strong
monomorphisms are closed. Moreover, for some particular M ’s, closed epi-
morphisms are surjective and closed monomorphisms actually coincide with
strong monomorphisms (see Propositions 3.8, 3.9 and Corollary 3.11). For a
general M , we then prove an embedding theorem for small categories with
M -closed relations and their ‘weakly version’, the categories withM -closed
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strong relations.
The paper is divided as follows. In Section 2, we recall the notions of

a category with M -closed relations and with M -closed strong relations. In
Section 3, we construct the category PartM and study its closed monomor-
phisms. Section 4 is devoted to the proof of our embedding theorems, while
in Section 5 we give some examples how to use these embedding theorems
to make proofs using elements in the above contexts.

2. Categories with M -closed (strong) relations

In order to recall the general treatment of unital, strongly unital, Mal’tsev and
subtractive categories introduced in [10], we first need to recall the notion of
a T -enrichment.

2.1 T -enrichments

Let T be an algebraic theory (by that we will always mean a finitary one-
sorted algebraic theory). An internal T -algebra in a category C is an object
A of C equipped with a structure of (ordinary) T -algebra on Y (A), where
Y : C → SetC

op

is the Yoneda embedding. An internal homomorphism of
internal T -algebras is a morphism f : A → B in C such that Y (f) is an
ordinary homomorphism of algebras. This forms the category AlgT C of
internal T -algebras.

A T -enrichment on C is a section of the forgetful functor AlgT C→ C.
In order words, it is the assignment of an internal T -algebra structure for
each object A of C in such a way that every morphism is an internal T -
algebra homomorphism. A T -enriched category is a category C with a fixed
T -enrichment. Thus, a T -enriched category is a category C equipped with
a factorisation HomC of the functor homC through AlgT , the category of
T -algebras.

AlgT

U
��

Cop × C
homC

//

HomC
99

Set

A T -enriched functor between the T -enriched categories C and D is a func-
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tor F : C→ D such that for all A,B ∈ C,

F : HomC(A,B)→ HomD(F (A), F (B))

is a homomorphism of T -algebras.
If K is another algebraic theory, T -enrichments of AlgK are in one-to-

one correspondence with central morphisms T → K of algebraic theories.
These are morphisms such that for every term t from T , its interpretation tι

as a term of K commutes with every term q of K in the sense that

tι(q(x11, . . . , x1m), . . . , q(xn1, . . . , xnm))

= q(tι(x11, . . . , xn1), . . . , t
ι(x1m, . . . , xnm))

is a theorem in K (where n and m are the arities of t and q respectively)
(see [5]). The theory T is said to be commutative [12] if the identity T → T
is a central morphism, i.e., if every two operations in T commute with each
other.

Notice that if C is a T -enriched category and P a small category, then
the equalities

t(α1, . . . , αn)P = t(α1,P , . . . , αn,P )

for all n-ary terms t of T , P ∈ P and natural transformations α1, . . . , αn :
F ⇒ G define a T -enrichment on the functor category CP. If T is com-
mutative and C small, the Yoneda embedding factors through AlgC

op

T as a
T -enriched functor YT : C→ AlgC

op

T .

AlgC
op

T

UCop

��

C
Y
//

YT

<<

SetC
op

2.2 Categories with M -closed relations

Let again T be an algebraic theory. An extended matrix of terms in T [10]
is a matrix

M =

 t11 · · · t1m u1
...

...
...

tn1 · · · tnm un

 (1)
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where the tij’s and the ui’s are terms of T in the variables x1, . . . , xk with
n > 1, m > 0 and k > 0.

Let r = (ri : R → A)i∈{1,...,n} be an n-ary relation in a T -enriched
category C. We say that r is M -closed when, for all object X in C and
morphisms x1, . . . , xk : X → A, if for each j ∈ {1, . . . ,m}, the span
(tij(x1, . . . , xk) : X → A)i∈{1,...,n} factors through r then so does the span
(ui(x1, . . . , xk) : X → A)i∈{1,...,n}.

Now, if r = (ri : R → Ai)i∈{1,...,n} is an n-ary relation in C, we say that
this relation r is strictly M -closed when, for all object X in C and families
of morphisms (xii′ : X → Ai)i∈{1,...,n},i′∈{1,...,k}, if for each j ∈ {1, . . . ,m},
the span (tij(xi1, . . . , xik) : X → Ai)i∈{1,...,n} factors through r then so does
the span (ui(xi1, . . . , xik) : X → Ai)i∈{1,...,n}.

Here is the link between M -closedness and strict M -closedness.

Theorem 2.1. (Theorem 5.5 in [10]) Let T be an algebraic theory, M an
extended matrix of terms in T as in (1) and C a finitely complete T -enriched
category. Then, the following conditions are equivalent:

1. Every relation r : R� An in C is M -closed.

2. Every relation r : R� A1 × · · · × An in C is strictly M -closed.

If the above conditions are satisfied, we say that C has M -closed rela-
tions. This matrix notation allows an easy characterisation in the varietal
context.

Theorem 2.2. (Theorem 3.2 in [10]) Let T → K be a central morphism of
algebraic theories. Let alsoM be an extended matrix of terms in T as in (1).
Then, the T -enriched category AlgK has M -closed relations if and only if
there exists an m-ary term p in K such that

p(tιi1(x1, . . . , xk), . . . , t
ι
im(x1, . . . , xk)) = uιi(x1, . . . , xk)

is a theorem of K for each i ∈ {1, . . . , n} (where tι is the interpretation in
K of the term t in T induced by the morphism T → K).

Example 2.3. Let T = Th[Set] be the theory of sets, C a finitely complete
category and MMal the extended matrix

MMal =

(
x y y x
x x y y

)
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of terms in Th[Set]. Then C has MMal-closed relations if and only if C is a
Mal’tsev category [4, 10].

If T = Th[Set∗] is the theory of pointed sets and C a finitely complete
pointed category, then the following equivalences hold:

• C has MUni-closed relations if and only if C is unital [2, 10], where
MUni is the extended matrix

MUni =

(
x 0 x
0 x x

)
.

• C has MStrUni-closed relations if and only if C is strongly uni-
tal [2, 10], where MStrUni is the extended matrix

MStrUni =

(
x 0 0 x
y y x x

)
.

• C has MSubt-closed relations if and only if C is subtractive [9, 10],
where MSubt is the extended matrix

MSubt =

(
x 0 x
x x 0

)
.

2.3 Categories with M -closed strong relations

We now weaken this notion of a category with M -closed relations, conside-
ring only strong relations. We recall that in a finitely complete category C, a
morphism m is said to be a strong monomorphism if it is orthogonal to any
epimorphism e. This means that for any commutative square

A
e // //

��

B

��

d

~~

C m
// D

with e an epimorphism, there exists a (unique) diagonal d making the two
triangles commutative. It is easy to see that since C has pullbacks, it implies
that m is a monomorphism and even an extremal monomorphism. Strong
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monomorphisms are closed under composition and stable under pullbacks.
Regular monomorphisms (i.e., equalisers) are strong monomorphisms. We
say that a span (ri : R → Ai)i∈{1,...,n} is a strong relation if the induced
morphism r = (r1, . . . , rn) : R→ A1×· · ·×An is a strong monomorphism.

Theorem 2.4. Let T be an algebraic theory, M an extended matrix of terms
in T as in (1) and C a finitely complete T -enriched category. Then, the
following conditions are equivalent:

1. Every strong relation r : R� An in C is M -closed.

2. Every strong relation r : R� A1×· · ·×An in C is strictlyM -closed.

Proof. 2⇒ 1 being trivial, let us prove 1⇒ 2. So, let us consider a strong
relation r : R � A1 × · · · × An in C. Since r is strong, its pullback along
π1 × · · · × πn is also strong, where πi : A1 × · · · × An → Ai is the i-th
projection.

S //

��

s
��

R
��

r
��

(A1 × · · · × An)n π1×···×πn
// A1 × · · · × An

We conclude the proof by Proposition 1.9 in [10] which says that r is strictly
M -closed if and only if s is M -closed.

If the above conditions are satisfied, we say that C has M -closed strong
relations. In view of the following examples, we could also have written that
C is ‘weakly with M -closed relations’.

Example 2.5. If T = Th[Set] and C is a finitely complete category, C has
MMal-closed strong relations if and only if C is a weakly Mal’tsev category.
Let us recall that C is weakly Mal’tsev [15] if for every pullback of split
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epimorphisms,

X ×Z Y
pY // //

pX

����

Y

g

����

rY

jj

X
f

// //

lX

SS

Z
s

kk

t

TT

the induced morphisms lX = (1X , tf) and rY = (sg, 1Y ) are jointly epimor-
phic. Such a characterisation holds because a binary relation is strictlyMMal-
closed precisely when it is difunctional [10] and by Corollary 5.1 in [11], C
is weakly Mal’tsev if and only if every binary strong relation in C is difuncti-
onal.

Example 2.6. If T = Th[Set∗] and C is a finitely complete pointed category,
C has MUni-closed strong relations if and only if C is weakly unital. We
recall that C is weakly unital [14] if for all objectsX and Y in C, the product
injections

X
(1X ,0)

// X × Y Y
(0,1Y )
oo

are jointly epimorphic. In that case, if r : R � A2 is a strong relation and
x : X → A a morphism such that (x, 0) : X → A2 and (0, x) : X → A2

factor through r, we consider the pullback s of r along x2.

S //

��

s
��

R
��

r
��

X2

x2
// A2

The relation s is strong, (1X , 0) and (0, 1X) : X → X2 factor through it
and we only have to prove that (1X , 1X) also factors through s. But since
(1X , 0) and (0, 1X) are jointly epimorphic, s is an epimorphism. Together
with the fact that it is also a strong monomorphism, s is an isomorphism and
so (1X , 1X) factors through it.

Conversely, suppose that C hasMUni-closed strong relations and let f, g :
X × Y → Z be morphisms such that f(1X , 0) = g(1X , 0) and f(0, 1Y ) =
g(0, 1Y ). Their equaliser e : E � X × Y is a strong relation through
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which (pX , 0) and (0, pY ) : X × Y → X × Y factor. Thus, by assump-
tion, 1X×Y = (pX , pY ) : X × Y → X × Y also factors through it, so that e
is an isomorphism and f = g.

3. The category of partial M -algebras

3.1 PartM and its limits

We suppose from now on that T is a commutative algebraic theory andM an
extended matrix of terms in T as in (1). A partial M -algebra is a T -algebra
A equipped with a partial operation p : Am → A such that

• for each i ∈ {1, . . . , n} and all a1, . . . , ak ∈ A,

p(ti1(a1, . . . , ak), . . . , tim(a1, . . . , ak))

is defined and

p(ti1(a1, . . . , ak), . . . , tim(a1, . . . , ak)) = ui(a1, . . . , ak);

• for each r-ary operation symbol σ of T and all families of elements
(aj

′

j ∈ A)j∈{1,...,m},j′∈{1,...,r} such that p(aj
′

1 , . . . , a
j′
m) is defined for

each j′ ∈ {1, . . . , r}, p(σ(a11, . . . , ar1), . . . , σ(a1m, . . . , arm)) is defined
and the equality

p(σ(a11, . . . , a
r
1), . . . , σ(a

1
m, . . . , a

r
m))

= σ(p(a11, . . . , a
1
m), . . . , p(a

r
1, . . . , a

r
m))

holds.

A homomorphism f : A→ B of partialM -algebras is a homomorphism
between the corresponding T -algebras such that, for all a1, . . . , am ∈ A for
which p(a1, . . . , am) is defined, p(f(a1), . . . , f(am)) is also defined and

p(f(a1), . . . , f(am)) = f(p(a1, . . . , am)).

We denote by PartM the corresponding category. We have a T -enrichment
on PartM : if σ is an r-ary operation symbol of T and f1, . . . , fr : A→ B are
homomorphisms of partial M -algebras, we define σ(f1, . . . , fr) : A→ B by

σ(f1, . . . , fr)(a) = σ(f1(a), . . . , fr(a))
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for all a ∈ A. Since T is commutative, AlgT has a T -enrichment compu-
ted as above and so σ(f1, . . . , fr) is a homomorphism of T -algebras. Mo-
reover, if a1, . . . , am ∈ A are such that p(a1, . . . , am) is defined, for each
j′ ∈ {1, . . . , r}, p(fj′(a1), . . . , fj′(am)) is also defined. This implies

p(σ(f1, . . . , fr)(a1), . . . , σ(f1, . . . , fr)(am))

= p(σ(f1(a1), . . . , fr(a1)), . . . , σ(f1(am), . . . , fr(am)))

is defined as well and equal to

σ(p(f1(a1), . . . , f1(am)), . . . , p(fr(a1), . . . , fr(am)))

= σ(f1(p(a1, . . . , am)), . . . , fr(p(a1, . . . , am)))

= σ(f1, . . . , fr)(p(a1, . . . , am))

in view of the second condition in the definition of partial M -algebras. This
proves σ(f1, . . . , fr) is indeed a homomorphism of partial M -algebras.

Let us now describe small limits in PartM . In order to do so, we consider
a small diagram D : J → PartM . Let (λj : L → UTD(j))j∈J be the limit of
UTD in AlgT , where UT : PartM → AlgT is the forgetful functor. So L is
given by

L = {(aj)j∈J ∈
∏
j∈J

D(j) |D(d)(aj) = aj′ ∀d : j → j′ ∈ J}

with
σ((a1j)j∈J, . . . , (a

r
j)j∈J) = (σ(a1j , . . . , a

r
j))j∈J

for each r-ary operation symbol σ of T . Now, if (a1j)j∈J, . . . , (a
m
j )j∈J ∈ L,

we define p((a1j)j∈J, . . . , (a
m
j )j∈J) if and only if p(a1j , . . . , a

m
j ) is defined for

all j ∈ J. In this case, we set

p((a1j)j∈J, . . . , (a
m
j )j∈J) = (p(a1j , . . . , a

m
j ))j∈J.

This makes L a partial M -algebra. Indeed, for each i ∈ {1, . . . , n} and each
(a1j)j∈J, . . . , (a

k
j )j∈J ∈ L,

p(ti1((a
1
j)j∈J, . . . , (a

k
j )j∈J), . . . , tim((a

1
j)j∈J, . . . , (a

k
j )j∈J))

= p((ti1(a
1
j , . . . , a

k
j ))j∈J, . . . , (tim(a

1
j , . . . , a

k
j ))j∈J)
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is defined since p(ti1(a1j , . . . , a
k
j ), . . . , tim(a

1
j , . . . , a

k
j )) is for each j ∈ J and

it is equal to

(p(ti1(a
1
j , . . . , a

k
j ), . . . , tim(a

1
j , . . . , a

k
j )))j∈J = (ui(a

1
j , . . . , a

k
j ))j∈J

= ui((a
1
j)j∈J, . . . , (a

k
j )j∈J).

We check the second condition analogously: Let σ be an r-ary operation
symbol of T and for each j′ ∈ {1, . . . , r}, (a1,j

′

j )j∈J, . . . , (a
m,j′

j )j∈J elements
of L such that p((a1,j

′

j )j∈J, . . . , (a
m,j′

j )j∈J) is defined (i.e., p(a1,j
′

j , . . . , am,j
′

j )
is defined for each j ∈ J). This implies

p(σ(a1,1j , . . . , a1,rj ), . . . , σ(am,1j , . . . , am,rj ))

is defined and equal to

σ(p(a1,1j , . . . , am,1j ), . . . , p(a1,rj , . . . , am,rj ))

for each j ∈ J. Thus

p(σ((a1,1j )j∈J, . . . , (a
1,r
j )j∈J), . . . , σ((a

m,1
j )j∈J, . . . , (a

m,r
j )j∈J))

= p((σ(a1,1j , . . . , a1,rj ))j∈J, . . . , (σ(a
m,1
j , . . . , am,rj ))j∈J)

is also defined in L and equal to

(σ(p(a1,1j , . . . , am,1j ), . . . , p(a1,rj , . . . , am,rj )))j∈J

= σ(p((a1,1j )j∈J, . . . , (a
m,1
j )j∈J), . . . , p((a

1,r
j )j∈J, . . . , (a

m,r
j )j∈J)),

which shows that L is a partial M -algebra. Moreover, given a cone
(µj : A → D(j))j∈J over D, let f be the unique homomorphism of T -
algebras

f : A −→L

a 7−→ (µj(a))j∈J

such that λjf = µj for each j ∈ J. If a1, . . . , am ∈ A are such that
p(a1, . . . , am) is defined in A, p(µj(a1), . . . , µj(am)) is defined in D(j) for
each j ∈ J. Thus, p(f(a1), . . . , f(am)) is also defined and equal to

p((µj(a1))j∈J, . . . , (µj(am))j∈J) = (p(µj(a1), . . . , µj(am)))j∈J

= (µj(p(a1, . . . , am)))j∈J

= f(p(a1, . . . , am)),
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which proves that f is a homomorphism of partial M -algebras and the cone
(λj : L → D(j))j∈J the limit of D. Therefore, PartM is complete and
UT : PartM → AlgT preserves small limits, but it does not reflect them
in general. Indeed, one could have defined p on a smaller subset of Lm in
order to make L a partial M -algebra, but this would not have made it a limit
in PartM . This means UT is not conservative in general. Here is a simple
counterexample.

Counterexample 3.1. Let T = Th[Set∗] andM =MUni from Example 2.3.
Let A be the pointed set {0, x} endowed with the structure of a partial MUni-
algebra given by p(0, 0) = 0, p(x, 0) = x = p(0, x) and p(x, x) undefined.
Let also B be the partial MUni-algebra on {0, x} given by p(0, 0) = 0 and
p(x, 0) = x = p(0, x) = p(x, x). Then, the identity map A → B is a
bijective homomorphism but not an isomorphism in PartMUni

.

3.2 Strong monomorphisms in PartM

In order to understand strong monomorphisms in PartM , we need to con-
struct a left adjoint to the forgetful functor U : PartM → Set. As an in-
termediate step, we consider the category m-Part where objects are sets X
equipped with a partial operation p : Xm → X and morphisms are functions
f : X → Y such that if p(x1, . . . , xm) is defined for some x1, . . . , xm ∈ X ,
then p(f(x1), . . . , f(xm)) is also defined and equal to f(p(x1, . . . , xm)). The
forgetful functorU : PartM → Set thus factors as PartM → m-Part→ Set.

Proposition 3.2. Let T be a commutative algebraic theory and M an exten-
ded matrix of terms in T as in (1). The forgetful functor

U ′ : PartM → m-Part

has a left adjoint.

Proof. Let X be an object of m-Part. Let us add the constant operation
symbols cx for all x ∈ X in T to form the theory T ′. We denote by I the set

I = {1, . . . , n} t {(x1, . . . , xm) ∈ Xm | p(x1, . . . , xm) is defined}
= {1, . . . , n} t dom(p)
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and, for each i = (x1, . . . , xm) ∈ dom(p), tij(y1, . . . , yk) is the k-ary term
cxj of T ′ for each j ∈ {1, . . . ,m} and ui(y1, . . . , yk) the k-ary term cp(i)
of T ′. Let Q be the quasivariety of T ′-algebras satisfying, for all r-ary
(respectively r′-ary) terms τ and τ ′ of T and all indices i1, . . . , ir, i′1, . . . , i

′
r′

in I , the following implication: if

τ(ti1j(y11, . . . , y1k), . . . , tirj(yr1, . . . , yrk))

= τ ′(ti′1j(y
′
11, . . . , y

′
1k), . . . , ti′r′j(y

′
r′1, . . . , y

′
r′k))

for each j ∈ {1, . . . ,m}, then

τ(ui1(y11, . . . , y1k), . . . , uir(yr1, . . . , yrk))

= τ ′(ui′1(y
′
11, . . . , y

′
1k), . . . , ui′r′ (y

′
r′1, . . . , y

′
r′k)).

For an object A of the quasivarietyQ, we define p in A via the equalities

p(τ(ti11(a11, . . . , a1k), . . . , tir1(ar1, . . . , ark)), . . .

. . . , τ(ti1m(a11, . . . , a1k), . . . , tirm(ar1, . . . , ark)))

= τ(ui1(a11, . . . , a1k), . . . , uir(ar1, . . . , ark))

for all r-ary terms τ of T , all indices i1, . . . , ir ∈ I and all families of
elements (aj′i′ ∈ A)j′∈{1,...,r},i′∈{1,...,k}. We do not define p for any other
elements ofAm. In view of the implications definingQ, this partial operation
p is well-defined. We see that the first condition defining partial M -algebras
is satisfied by choosing τ to be the identity term τ(y) = y. The second
condition is also satisfied: Let σ be an r-ary term of T , τ j′ an rj′-ary term
of T for each j′ ∈ {1, . . . , r}, ij

′

j′′ ∈ I for all j′ ∈ {1, . . . , r} and j′′ ∈
{1, . . . , rj′}, and aj

′

j′′i′ ∈ A for all j′ ∈ {1, . . . , r}, j′′ ∈ {1, . . . , rj′} and
i′ ∈ {1, . . . , k}. Then,

p((σ((τ j
′
((t

ij
′

j′′j
(aj

′

j′′1, . . . , a
j′

j′′k))
rj

′

j′′=1))
r
j′=1))

m
j=1)

is defined in view of the (r1 + · · ·+ rr)-ary term

σ(τ 1(y11, . . . , y1r1), . . . , τ
r(yr1, . . . , yrrr))
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of T . Moreover, it is equal to

σ((τ j
′
((u

ij
′

j′′
(aj

′

j′′1, . . . , a
j′

j′′k))
rj

′

j′′=1))
r
j′=1)

= σ((p((τ j
′
((t

ij
′

j′′j
(aj

′

j′′1, . . . , a
j′

j′′k))
rj

′

j′′=1))
m
j=1))

r
j′=1)

as required. So A has been endowed with a structure of partial M -algebra.
We consider the function f : X → U ′(A) : x 7→ cx. It is a morphism in
m-Part. Indeed, if i = (x1, . . . , xm) ∈ dom(p), choosing τ to be the identity
term τ(y) = y and i1 = i, we have

p(f(x1), . . . , f(xm)) = p(cx1 , . . . , cxm)

= p(ti1(a1, . . . , ak), . . . , tim(a1, . . . , ak))

= ui(a1, . . . , ak)

= cp(i)

= f(p(x1, . . . , xm)).

If g : A→ A′ is a morphism in Q, it can be considered as a homomorphism
of partial M -algebras making the triangle

X
f
//

f ′
""

U ′(A)

g

��

U ′(A′)

commutative. Indeed, the above triangle commutes since g is a T ′-homo-
morphism and when

p(τ(ti11(a11, . . . , a1k), . . . , tir1(ar1, . . . , ark)), . . .

. . . , τ(ti1m(a11, . . . , a1k), . . . , tirm(ar1, . . . , ark)))

is defined in A,

p(g(τ(ti11(a11, . . . , a1k), . . . , tir1(ar1, . . . , ark))), . . .

. . . , g(τ(ti1m(a11, . . . , a1k), . . . , tirm(ar1, . . . , ark))))

= p(τ(ti11(g(a11), . . . , g(a1k)), . . . , tir1(g(ar1), . . . , g(ark))), . . .

. . . , τ(ti1m(g(a11), . . . , g(a1k)), . . . , tirm(g(ar1), . . . , g(ark))))
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is defined in A′ and equal to

τ(ui1(g(a11), . . . , g(a1k)), . . . , uir(g(ar1), . . . , g(ark)))

= g(τ(ui1(a11, . . . , a1k), . . . , uir(ar1, . . . , ark))).

We have thus defined a functor F ′ : Q → (X ↓ U ′) where (X ↓ U ′) is the
comma category of morphisms X → U ′(A) in m-Part.

On the other hand, if f : X → U ′(A) is an object of (X ↓ U ′), A admits
a T ′-algebra structure considering cx = f(x) for each x ∈ X . Moreover, for
each i ∈ I and a1, . . . , ak ∈ A,

p(ti1(a1, . . . , ak), . . . , tim(a1, . . . , ak)) = ui(a1, . . . , ak).

So, if τ is an r-ary term of T , i1, . . . , ir ∈ I and (aj′i′ ∈ A)j′∈{1,...,r},i′∈{1,...,k},

p(τ(ti11(a11, . . . , a1k), . . . , tir1(ar1, . . . , ark)), . . .

. . . , τ(ti1m(a11, . . . , a1k), . . . , tirm(ar1, . . . , ark)))

= τ(ui1(a11, . . . , a1k), . . . , uir(ar1, . . . , ark))

since A is a partial M -algebra. Hence, A satisfies the implications defining
Q and this makes G′ : (X ↓ U ′)→ Q a functor.

Since the equality above holds in A for any object f : X → U ′(A) of
(X ↓ U ′), the identity map on A defines a morphism εf : F

′G′(f) → f in
(X ↓ U ′). This gives a natural transformation ε : F ′G′ ⇒ 1(X↓U ′). Moreo-
ver, G′F ′ = 1Q and we have constructed an adjunction F ′ a G′. But Q is a
quasivariety, so it has an initial object. Therefore (X ↓ U ′) has also an initial
object which is the reflection of X along U ′.

To construct the reflection of the set X along the forgetful functor
m-Part → Set is much easier. It suffices to consider the identity map
1X : X → X where the partial operation p onX is nowhere defined. This gi-
ves a left adjoint Set→ m-Part. Composed with the left adjoint m-Part→
PartM given by the above proposition, we have constructed the left adjoint
F : Set → PartM to the forgetful functor U : PartM → Set. We remark
that in the particular case X = ∅, the quasivariety Q described above is the
quasivariety QM of T -algebras satisfying, for all r-ary (respectively r′-ary)
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terms τ and τ ′ of T and all indices i1, . . . , ir, i′1, . . . , i
′
r′ in {1, . . . , n}, the

following implication: if

τ(ti1j(a11, . . . , a1k), . . . , tirj(ar1, . . . , ark))

= τ ′(ti′1j(a
′
11, . . . , a

′
1k), . . . , ti′r′j(a

′
r′1, . . . , a

′
r′k))

for each j ∈ {1, . . . ,m}, then

τ(ui1(a11, . . . , a1k), . . . , uir(ar1, . . . , ark))

= τ ′(ui′1(a
′
11, . . . , a

′
1k), . . . , ui′r′ (a

′
r′1, . . . , a

′
r′k)).

The functor F ′ : Q → (X ↓ U ′) is then nothing but the left adjoint QM →
PartM to the forgetful functor PartM → QM . The left adjoint F : Set →
PartM can thus be also obtained by composing F ′ : QM → PartM with the
usual free functor Set→ QM .

We now consider the case X = {1, . . . ,m + 1} with p defined only by
p(1, . . . ,m) = m + 1. We denote by X → U ′(FM) its reflection along
U ′ : PartM → m-Part and g its restriction g : {1, . . . ,m} ↪→ X → U(FM).
The function g is such that p(g(1), . . . , g(m)) is defined in FM and universal
with that property, i.e., if h : {1, . . . ,m} → U(A) is a function to a par-
tial M -algebra A where p(h(1), . . . , h(m)) is defined, there exists a unique
homomorphism of partial M -algebras h : FM → A such that U(h) ◦ g = h.

{1, . . . ,m} g
//

∀h
&&

U(FM)

∃!U(h)zz

U(A)

Since U : PartM → Set preserves kernel pairs, monomorphisms in
PartM are exactly the injective homomorphisms. We can now study strong
monomorphisms: Let f : A � B be such a monomorphism. Consider
also the homomorphism e : F ({1, . . . ,m}) → FM given by the univer-
sal property of F ({1, . . . ,m}) and the function g : {1, . . . ,m} → U(FM).
If h, k : FM → C are homomorphisms of partial M -algebras such that
he = ke, then hg = kg and h = k. Thus e is actually an epimorphism
in PartM . If a1, . . . , am ∈ A are such that p(f(a1), . . . , f(am)) is defi-
ned, we can construct a commutative square as below with k(j) = aj and
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h(g(j)) = f(aj) for each j ∈ {1, . . . ,m}.

F ({1, . . . ,m}) e // //

k
��

FM

h
��

xx
A //

f
// B

Since f is supposed to be a strong monomorphism, h factors through f .
Hence, p(a1, . . . , am) is defined as well. Therefore, strong monomorphisms
in PartM reflect the m-uples where p is defined, i.e., if p(f(a1), . . . , f(am))
is defined, then so is p(a1, . . . , am). Following the terminology of [7] in
universal partial algebra, homomorphisms in PartM which reflect the m-
uples where p is defined are said to be closed. This leads us to the following
proposition.

Proposition 3.3. Let T be a commutative algebraic theory and M an exten-
ded matrix of terms in T . Strong monomorphisms in PartM are closed.

The homomorphism from Counterexample 3.1 is an example of a bi-
jective homomorphism of partial M -algebras which is not closed. Note that
isomorphisms in PartM are exactly the bijective closed homomorphisms.
Indeed, in view of the next lemma, closedness of a bijective homomorphism
f : B → C is exactly what we need to prove the inverse map f−1 : C → B
is a homomorphism of partial M -algebras.

Lemma 3.4. Let T be a commutative algebraic theory and M an extended
matrix of terms in T . Let also g : A → B be a function between partial
M -algebras and f : B � C a closed monomorphism in PartM . If fg is a
homomorphism of partial M -algebras, then so is g.

Proof. Let σ be an r-ary operation symbol of T and a1, . . . , ar ∈ A. Since

f(g(σ(a1, . . . , ar))) = σ(fg(a1), . . . , fg(ar))

= f(σ(g(a1), . . . , g(ar)))

and f is injective, g is a homomorphism of T -algebras.
Besides, if a1, . . . , am ∈ A are such that p(a1, . . . , am) are defined in A,

p(fg(a1), . . . , fg(am)) is defined in C and p(g(a1), . . . , g(am)) is defined in
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B since f is closed. We can also compute

f(p(g(a1), . . . , g(am))) = p(fg(a1), . . . , fg(am))

= fg(p(a1, . . . , am)),

which implies

p(g(a1), . . . , g(am)) = g(p(a1, . . . , am))

since f is injective.

We now want to prove that, in some cases, closed monomorphisms in
PartM are exactly the strong monomorphisms. To achieve this, we need to
study the properties of closed monomorphisms.

Proposition 3.5. Let T be a commutative algebraic theory and M an ex-
tended matrix of terms in T . Closed monomorphisms in PartM are stable
under pullbacks.

Proof. We consider a closed monomorphism f : A � B in PartM and its
pullback along g : C → B.

P //
f ′
//

��

C

g

��

A //

f
// B

If (a1, c1), . . . , (am, cm) ∈ P , p((a1, c1), . . . , (am, cm)) is defined if and only
if p(a1, . . . , am) and p(c1, . . . , cm) are defined. But if p(c1, . . . , cm) is de-
fined, p(g(c1), . . . , g(cm)) = p(f(a1), . . . , f(am)) is also defined. Since f
is closed, this further implies p(a1, . . . , am) and so p((a1, c1), . . . , (am, cm))
are defined. Thus f ′ is a closed monomorphism.

Let us recall the following well-known proposition, which will be used
in the particular case C = PartM andR the class of closed monomorphisms.

Proposition 3.6. LetR be a class of monomorphisms in the finitely complete
category C which is stable under pullbacks and contains regular monomor-
phisms. A morphism e in C is orthogonal to all elements ofR if and only if,
when e factors as fg with f ∈ R, then f is an isomorphism. In this case, e
is an epimorphism.
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Proposition 3.7. Let T be a commutative algebraic theory and M an exten-
ded matrix of terms in T . If R denotes the class of closed monomorphisms
in PartM andR⊥ its orthogonal class, (R⊥,R) is a factorisation system.

Proof. Since R contains regular monomorphisms, is stable under pullbacks
and closed under composition, we only have to prove that each homomor-
phism f : A → B of partial M -algebras factors as an element of R⊥ follo-
wed by a closed monomorphism. Let B′ be the smallest sub-T -algebra of B
satisfying the conditions:

• f(a) ∈ B′ for each a ∈ A,

• if b1, . . . , bm ∈ B′ are such that p(b1, . . . , bm) is defined in B, then
p(b1, . . . , bm) ∈ B′.

We consider the unique structure of partial M -algebra on B′ making the in-
clusion i : B′ ↪→ B a closed monomorphism. Then, f factors as if ′ with
f ′ : A → B′ a homomorphism of partial M -algebras by Lemma 3.4. More-
over, if f ′ = f ′′g with f ′′ a closed monomorphism, the image of f ′′ contains
B′ by definition of B′. Thus f ′′ is surjective and so an isomorphism. By
Proposition 3.6, f ′ ∈ R⊥.

Epimorphisms in PartM thus factor as an epimorphism orthogonal to
closed monomorphisms followed by a closed monomorphism (which is also
an epimorphism). Therefore, to prove that closed monomorphisms are ortho-
gonal to epimorphisms (i.e., are strong monomorphisms), it suffices to prove
that closed epimorphisms are surjective. Indeed, in that case, this would im-
ply that the only epimorphisms which are closed monomorphisms are the
isomorphisms. This will be true for some particular M ’s.

Proposition 3.8. Let M be an extended matrix of terms in Th[Set∗]. Closed
epimorphisms in PartM are surjective.

Proof. Firstly, we notice that all partial M -algebras with one element are
isomorphic (since p(0, . . . , 0) has to be defined). If this partial M -algebra
is the unique one, the result is trivial. Hence, we suppose that there exists a
partial M -algebra C with a non-zero element c ∈ C. Now, we also suppose
we have a closed epimorphism f : A� B in PartM which is not surjective.
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Let Im(f) be the set-theoretical image of f and D = D′ = B \ Im(f) 6= ∅.
Notice that 0 ∈ Im(f). We define a partial m-ary operation p on

Im(f) tD tD′

in the following way:

1. p(ti1(x1, . . . , xk), . . . , tim(x1, . . . , xk)) is defined as ui(x1, . . . , xk) for
all i ∈ {1, . . . , n} and all x1, . . . , xk ∈ Im(f) tD tD′;

2. p restricted on (Im(f) tD)m is defined as in B via the isomorphism
of pointed sets Im(f) tD ∼= B;

3. p restricted on (Im(f) tD′)m is defined as in B via the isomorphism
of pointed sets Im(f) tD′ ∼= B;

4. p is defined nowhere else than required by one of the above conditions.

Let us prove this p is well-defined. There is no problem with condition 1
alone. Indeed, let us suppose by contradiction there exist i, i′ ∈ {1, . . . , n}
and x1, . . . , xk, x′1, . . . , x

′
k ∈ Im(f) t D t D′ satisfying tij(x1, . . . , xk) =

ti′j(x
′
1, . . . , x

′
k) for all j ∈ {1, . . . ,m}, but ui(x1, . . . , xk) 6= ui′(x

′
1, . . . , x

′
k).

Without loss of generality, we can suppose ui(x1, . . . , xk) 6= 0. We consider
any homomorphism of pointed sets g : Im(f) t D t D′ → C which sends
ui(x1, . . . , xk) to c and ui′(x′1, . . . , x

′
k) to 0. Then

tij(g(x1), . . . , g(xk)) = ti′j(g(x
′
1), . . . , g(x

′
k))

for each j ∈ {1, . . . ,m} and therefore

c = g(ui(x1, . . . , xk))

= ui(g(x1), . . . , g(xk))

= p(ti1(g(x1), . . . , g(xk)), . . . , tim(g(x1), . . . , g(xk)))

= p(ti′1(g(x
′
1), . . . , g(x

′
k)), . . . , ti′m(g(x

′
1), . . . , g(x

′
k)))

= ui′(g(x
′
1), . . . , g(x

′
k))

= g(ui′(x
′
1, . . . , x

′
k))

= 0,
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which is a contradiction.
Since B is a (well-defined) partial M -algebra, there is no problem with

condition 2 alone nor with condition 3 alone. The cohabitation of condi-
tions 2 and 3 does not cause any problem neither. Indeed, the only way
it could, is to have b1, . . . , bm ∈ Im(f) such that p(b1, . . . , bm) is defined
but does not belong to Im(f). If we write bi = f(ai) for some ai ∈ A,
this means p(f(a1), . . . , f(am)) is defined. But since f is closed, it implies
p(a1, . . . , am) is defined and

p(b1, . . . , bm) = p(f(a1), . . . , f(am)) = f(p(a1, . . . , am)) ∈ Im(f).

By symmetry, it remains to check there is no problem with the cohabita-
tion of conditions 1 and 2. If there is one, it means there exist x1, . . . , xk ∈
Im(f) tD tD′ and i ∈ {1, . . . , n} such that tij(x1, . . . , xk) ∈ Im(f) tD
for each j ∈ {1, . . . ,m} but p(ti1(x1, . . . , xk), . . . , tim(x1, . . . , xk)) defined
as in B (via Im(f) tD ∼= B) is not ui(x1, . . . , xk). We denote by

q : Im(f) tD tD′ → Im(f) tD

the homomorphism of pointed sets which coequalises the two copies of D.
This implies

tij(x1, . . . , xk) = q(tij(x1, . . . , xk)) = tij(q(x1), . . . , q(xk))

for each j ∈ {1, . . . ,m}. Since we have already shown there is no problem
with condition 1 alone, we can write using this condition

ui(x1, . . . , xk) = p(ti1(x1, . . . , xk), . . . , tim(x1, . . . , xk))

= p(ti1(q(x1), . . . , q(xk)), . . . , tim(q(x1), . . . , q(xk)))

= ui(q(x1), . . . , q(xk)).

But since B is a partial M -algebra, if we compute using condition 2, we also
get

p(ti1(x1, . . . , xk), . . . , tim(x1, . . . , xk))

= p(ti1(q(x1), . . . , q(xk)), . . . , tim(q(x1), . . . , q(xk)))

= ui(q(x1), . . . , q(xk)).

- 386 -



P.-A. JACQMIN PARTIAL ALGEBRAS AND EMBEDDING THEOREMS

This discussion proves p is well defined.
The first condition to be a partialM -algebra is satisfied by Im(f)tDtD′

in view of condition 1. In the case T = Th[Set∗], the second one resumes to
p(0, . . . , 0) = 0 which is true since it holds in B. Thus Im(f) t D t D′ is
a partial M -algebra. Now we consider the two obvious homomorphisms of
partialM -algebras g1, g2 : B → Im(f)tDtD′. They satisfy g1f = g2f but
g1 6= g2 since D = D′ 6= ∅. This is a contradiction since f was supposed to
be an epimorphism.

If T = Th[Set], there are two partial M -algebras with at most one ele-
ment, i.e., the empty partial M -algebra and the singleton one {?} (in which
p(?, . . . , ?) has to be defined since n > 1). Therefore, the first argument in
the previous proof does not hold if we replace Th[Set∗] by Th[Set]. For in-
stance, ifM =

(
x y

)
, the category PartM is equivalent to the arrow cate-

gory 0→ 1. With this M , the unique homomorphism of partial M -algebras
∅ → {?} is an injective closed epimorphism, but not an isomorphism. Ho-
wever, if M is such that there exists a partial M -algebra with at least two
elements, the same proof can be repeated to get the following proposition.

Proposition 3.9. Let M be an extended matrix of terms in Th[Set] such
that there exists a partial M -algebra with at least two elements. Closed
epimorphisms in PartM are surjective.

Counterexample 3.10. If T is the theory of commutative monoids and M
is the trivial matrix

(
x x

)
, PartM is isomorphic to the category of com-

mutative monoids. There, the inclusion N ↪→ Z is an injective closed epi-
morphism but not an isomorphism.

As explained above, Propositions 3.8 and 3.9 admit the following corol-
lary.

Corollary 3.11. In PartMMal
, PartMUni

, PartMStrUni
and PartMSubt

, closed
monomorphisms coincide with strong monomorphisms.

We now prove that PartM has M -closed strong relations.

Proposition 3.12. Let T be a commutative algebraic theory and M an ex-
tended matrix of terms in T as in (1). Every relation r : R� A1× · · ·×An
which is a closed monomorphism in PartM is strictly M -closed. In particu-
lar, PartM has M -closed strong relations.
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Proof. Consider a family of morphisms (xii′ : X → Ai)i∈{1,...,n},i′∈{1,...,k} in
PartM for which the morphism

(t1j(x11, . . . , x1k), . . . , tnj(xn1, . . . , xnk)) : X → A1 × · · · × An

factors as rwj for each j ∈ {1, . . . ,m}.

R
��

r
��

X

wj

22

(t1j(x11,...,x1k),...,tnj(xn1,...,xnk))
// A1 × · · · × An

We know that for all x ∈ X and each i ∈ {1, . . . , n},

p(ti1(xi1(x), . . . , xik(x)), . . . , tim(xi1(x), . . . , xik(x)))

is defined and equal to ui(xi1(x), . . . , xik(x)). Using the description of small
products in PartM , we can say that, for all x ∈ X , p(rw1(x), . . . , rwm(x))
is defined and equal to

(u1(x11(x), . . . , x1k(x)), . . . , un(xn1(x), . . . , xnk(x))).

Since r is closed, p(w1(x), . . . , wm(x)) is defined in R and we can consider
the function w : X → R : x 7→ p(w1(x), . . . , wm(x)) which satisfies

rw = (u1(x11, . . . , x1k), . . . , un(xn1, . . . , xnk)).

Finally, Lemma 3.4 tells us w is a homomorphism of partial M -algebras
since rw is and r is a closed monomorphism, which concludes the proof.

4. The embedding theorems

Now that the preliminary work on PartM has been done, we can prove our
embedding theorems for small categories with M -closed relations and for
small categories with M -closed strong relations. In order to prove both at
the same time, we are going to use a set of monomorphisms, closed under
composition, stable under pullbacks and which contains regular monomor-
phisms.
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Theorem 4.1. Let T be a commutative algebraic theory and M an extended
matrix of terms in T as in (1). Let alsoR be a set of monomorphisms in the
small finitely complete T -enriched category C such that R is closed under
composition, stable under pullbacks and contains regular monomorphisms.
Suppose also that all n-ary relations R � An in R are M -closed in C.
Then, there exists a full and faithful T -enriched embedding φ : C ↪→ PartC

op

M

which preserves and reflects finite limits. Moreover, for each monomorphism
f : A � B in R and each X ∈ Cop, φ(f)X is a closed monomorphism in
PartM .

Proof. We would like to factorise the T -enriched Yoneda embedding YT :
C→ AlgC

op

T through PartC
op

M .

PartC
op

M

UCop
T
��

C
YT
//

φ
<<

AlgC
op

T

In order to do so, let us provide C(X, Y ) with a structure of partial M -
algebra, for all objects X, Y ∈ C. Thus, let f1, . . . , fm : X → Y be
morphisms in C. We define p(f1, . . . , fm) if and only if there exist mor-
phisms x1, . . . , xk : X → W , a relation r : Z � W n in R, and morphisms
g1, . . . , gm : X → Z and f : Z → Y such that, for all j ∈ {1, . . . ,m},
fgj = fj and rgj = (t1j(x1, . . . , xk), . . . , tnj(x1, . . . , xk)).

X
(t1j(x1,...,xk),...,tnj(x1,...,xk))

��

gj

��

fj

��

W n Zoor
oo

f
// Y

In this case, since r is M -closed, there exists a unique h : X → Z such that
rh = (u1(x1, . . . , xk), . . . , un(x1, . . . , xk)) and we define p(f1, . . . , fm) =
fh.

Z
��

r
��

X

∃!h

44

(u1(x1,...,xk),...,un(x1,...,xk))
//W n
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Let us first prove the independence of the choices. So, suppose x′1, . . . , x
′
k :

X → W ′, r′ : Z ′ � W ′n, g′1, . . . , g
′
m : X → Z ′, f ′ : Z ′ → Y and h′ : X →

Z ′ also satisfy the above conditions and let us prove fh = f ′h′. We consider
the following pullback

Z1
q1

//

��

r1
��

Z
��

r
��

(W ×W ′)n
πn
1

//W n

where π1 : W ×W ′ → W is the first projection. We also consider the unique
morphisms l11, . . . , l

m
1 : X → Z1 such that q1l

j
1 = gj and

r1l
j
1 = (t1j((x1, x

′
1), . . . , (xk, x

′
k)), . . . , tnj((x1, x

′
1), . . . , (xk, x

′
k)))

for each j ∈ {1, . . . ,m}. Let also h1 : X → Z1 be the unique morphism
such that q1h1 = h and

r1h1 = (u1((x1, x
′
1), . . . , (xk, x

′
k)), . . . , un((x1, x

′
1), . . . , (xk, x

′
k))).

Similarly, we define Z2, r2, q2, l12, . . . , l
m
2 and h2 using the pullback of r′

along πn2 where π2 : W ×W ′ → W ′ is the second projection. Since R is
stable under pullbacks, r1, r2 ∈ R. We also construct their intersection,

P
��

r4
��

//
r3 // Z2

��

r2
��

Z1
//
r1
// (W ×W ′)n

the unique morphism h3 : X → P such that r3h3 = h2 and r4h3 = h1 and,
for each j ∈ {1, . . . ,m}, the unique morphism lj3 : X → P such that r3l

j
3 =

lj2 and r4l
j
3 = lj1. Again, r3, r4 ∈ R. Finally, we consider the following

equaliser diagram.

E // e // P
fq1r4

//

f ′q2r3

// Y

For each j ∈ {1, . . . ,m}, lj3 factors as elj4 = lj3 since

fq1r4l
j
3 = fq1l

j
1 = fgj = fj = f ′g′j = f ′q2l

j
2 = f ′q2r3l

j
3.
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Hence, for all such j, the morphism

(t1j((x1, x
′
1), . . . , (xk, x

′
k)), . . . , tnj((x1, x

′
1), . . . , (xk, x

′
k)))

factors as r1r4el
j
4. But since the relation r1r4e : E � (W ×W ′)n is inR, it

is M -closed and so there exists a unique morphism l5 : X → E such that

r1r4el5 = (u1((x1, x
′
1), . . . , (xk, x

′
k)), . . . , un((x1, x

′
1), . . . , (xk, x

′
k))).

The equalities r1r4h3 = r1h1 = r1r4el5 imply that h3 = el5 and it remains
to compute

fh = fq1h1 = fq1r4h3 = fq1r4el5

= f ′q2r3el5 = f ′q2r3h3 = f ′q2h2

= f ′h′.

Now that we have shown p is well-defined, let us prove it makes C(X, Y )
a partial M -algebra. If i ∈ {1, . . . , n} and x1, . . . , xk ∈ C(X, Y ), we can
set W = Y , r = 1Y n ,

gj = (t1j(x1, . . . , xk), . . . , tnj(x1, . . . , xk)),

f = πi : Y
n → Y the i-th projection and

h = (u1(x1, . . . , xk), . . . , un(x1, . . . , xk)).

This shows that p(ti1(x1, . . . , xk), . . . , tim(x1, . . . , xk)) is defined and equal
to fh = ui(x1, . . . , xk).

Now, let σ be an r-ary operation symbol of T with r > 0 and

(f j
′

j ∈ C(X, Y ))j∈{1,...,m},j′∈{1,...,r}

be families of morphisms such that p(f j
′

1 , . . . , f
j′
m) is defined for each j′ ∈

{1, . . . , r} using the diagrams below.

X

��

(t1j(x
j′
1 ,...,x

j′
k ),...,tnj(x

j′
1 ,...,x

j′
k ))

gj
′

j
��

fj
′

j

��

(Wj′)
n Zj′oo

rj
′

oo

fj
′
// Y
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Zj′
��

rj
′

��

X

hj
′

44

(u1(x
j′
1 ,...,x

j′
k ),...,un(x

j′
1 ,...,x

j′
k ))

// (Wj′)
n

We consider the pullbacks

Sj′
qj

′
//

��

sj
′

��

Zj′
��

rj
′

��

(W1 × · · · ×Wr)
n

πn
j′

// (Wj′)
n

where πj′ : W1×· · ·×Wr → Wj′ is the j′-th projection as usual. We denote
by lj

′

j the unique morphism X → Sj′ such that qj′lj
′

j = gj
′

j and

sj
′
lj

′

j = (t1j(x1, . . . , xk), . . . , tnj(x1, . . . , xk))

where xi′ is the factorisation (x1i′ , . . . , x
r
i′) : X → W1 × · · · ×Wr. Let also

hj
′

1 : X → Sj′ be the unique morphism satisfying qj′hj
′

1 = hj
′ and

sj
′
hj

′

1 = (u1(x1, . . . , xk), . . . , un(x1, . . . , xk)).

We now consider the intersection of the sj′’s

Z
ww

t1

ww

''

tr

''
S1

''

s1 ''

. . . Sr
ww

srww

(W 1 × · · · ×W r)n

and the unique morphisms lj, h : X → Z such that tj′lj = lj
′

j and tj′h = hj
′

1 .
Since this intersection can be built using pullbacks and compositions, s1t1 =
· · · = srtr ∈ R. Thus, we end up with the commutative diagrams

X

vv

(t1j(x1,...,xk),...,tnj(x1,...,xk))

lj

��

σ(f1j ,...,f
r
j )

%%
(W 1 × · · · ×W r)n Zoo

s1t1
oo

σ(f1q1t1,...,frqrtr)
// Y
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and
Z
��

s1t1
��

X

h

33

(u1(x1,...,xk),...,un(x1,...,xk))
// (W 1 × · · · ×W r)n

proving that p(σ(f 1
1 , . . . , f

r
1 ), . . . , σ(f

1
m, . . . , f

r
m)) is defined and equal to

σ(f 1q1t1h, . . . , f rqrtrh) = σ(p(f 1
1 , . . . , f

1
m), . . . , p(f

r
1 , . . . , f

r
m)).

If r = 0, we also have p(σ, . . . , σ) = σ. To see it, we can use for instance
the commutative diagram below.

X
(t1j(1X ,...,1X),...,tnj(1X ,...,1X))

�� ��

σ

��

Xn Xnoo
1Xn

oo
σ
// Y

We have therefore provided C(X, Y ) with a structure of partial M -algebra.
In view of the definition of a T -enrichment, if x : X ′ → X and y : Y →

Y ′ are morphisms in C,

− ◦ x : C(X, Y )→ C(X ′, Y )

and
y ◦ − : C(X, Y )→ C(X, Y ′)

are homomorphisms of T -algebras. Let us prove they are actually homo-
morphisms of partial M -algebras. So let f1, . . . , fm : X → Y be morphisms
of C such that p(f1, . . . , fm) is defined via the following diagrams.

X
(t1j(x1,...,xk),...,tnj(x1,...,xk))

��

gj

��

fj

��

W n Zoor
oo

f
// Y

Z
��

r
��

X

h

44

(u1(x1,...,xk),...,un(x1,...,xk))
//W n

Thus, in view of the commutative diagrams

X ′
(t1j(x1x,...,xkx),...,tnj(x1x,...,xkx))

��

gjx
��

fjx

��

W n Zoor
oo

f
// Y
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and
Z
��

r
��

X ′

hx

33

(u1(x1x,...,xkx),...,un(x1x,...,xkx))
//W n

p(f1x, . . . , fmx) is defined and equal to fhx = p(f1, . . . , fm)x, which shows
that − ◦ x is a homomorphism of partial M -algebras. Besides, since the
diagram

X
(t1j(x1,...,xk),...,tnj(x1,...,xk))

��

gj

��

yfj

��

W n Zoor
oo

yf
// Y ′

commutes, p(yf1, . . . , yfm) is defined and equal to yfh = yp(f1, . . . , fm),
which proves that y ◦− is a homomorphism of partial M -algebras. We have
thus constructed a functor φ : C→ PartC

op

M as announced.

PartC
op

M

UCop
T
��

C
YT
//

φ
<<

AlgC
op

T

This φ preserves T -enrichment since YT and UT do and UT is faithful.
It is full and faithful since YT is full and faithful and UT is faithful.

Since φ is full and faithful, it reflects isomorphisms. Thus, it will reflect
finite limits if it preserves them. So, let (λj : L → D(j))j∈J be the limit
of D : J → C with J a finite category. We would like to prove that for all
X ∈ C,

(φ(λj)X : C(X,L)→ C(X,D(j)))j∈J

is a limit in PartM . But since YT preserves limits, and in view of the des-
cription of small limits in PartM (Section 3.1), we only have to prove that, if
f1, . . . , fm : X → L are such that p(λjf1, . . . , λjfm) is defined for all j ∈ J,
then p(f1, . . . , fm) is also defined.

Thus, to prove that φ preserves the terminal object, we have to show that
p(!, . . . , !) is defined where ! is the unique morphismX → 1. This is obvious
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in view of the diagram below.

X
(t1j(!,...,!),...,tnj(!,...,!))

��

!
��

!

��

1n = 1 1oo
11
oo

11
// 1

Moreover, φ preserves the binary product Y × Y ′.

Y × Y ′
π1

{{

π2

##

Y Y ′

Indeed, suppose f1, . . . , fm : X → Y and f ′1, . . . , f
′
m : X → Y ′ are such that

p(f1, . . . , fm) and p(f ′1, . . . , f
′
m) are defined using the following diagrams.

X
(t1j(x1,...,xk),...,tnj(x1,...,xk))

��

gj

��

fj

��

W n Zoor
oo

f
// Y

X
(t1j(x

′
1,...,x

′
k),...,tnj(x

′
1,...,x

′
k))

��

g′j
��

f ′j

��

W ′n Z ′oo
r′
oo

f ′
// Y ′

We consider again the pullback

Z1
q1

//

��

r1
��

Z
��

r
��

(W ×W ′)n
πn
1

//W n

and the unique morphisms l11, . . . , l
m
1 : X → Z1 such that q1l

j
1 = gj and

r1l
j
1 = (t1j((x1, x

′
1), . . . , (xk, x

′
k)), . . . , tnj((x1, x

′
1), . . . , (xk, x

′
k)))
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for all j ∈ {1, . . . ,m}. We define similarly Z2, r2, q2 and l12, . . . , l
m
2 . We

also consider the intersection

P
��

r4
��

//
r3 // Z2

��

r2
��

Z1
//
r1
// (W ×W ′)n

and the unique morphisms l13, . . . , l
m
3 : X → P such that r4l

j
3 = lj1 and r3l

j
3 =

lj2 for all j ∈ {1, . . . ,m}. Then, since the diagram below is commutative,

X

yy

(t1j((x1,x
′
1),...,(xk,x

′
k)),...,tnj((x1,x

′
1),...,(xk,x

′
k)))

lj3
��

(fj ,f
′
j)

##

(W ×W ′)n Poor1r4
oo

(fq1r4,f ′q2r3)
// Y × Y ′

p((f1, f
′
1), . . . , (fm, f

′
m)) is also defined and φ preserves finite products.

Finally, to prove that φ preserves equalisers, it is enough to show that
φ(e)X = e ◦ − : C(X, Y ) → C(X, Y ′) is a closed homomorphism for each
X ∈ Cop and each regular monomorphism e : Y � Y ′. To conclude the
proof, we are going to prove the more general fact that φ(e)X is a closed
homomorphism for each e : Y � Y ′ in R and each X ∈ Cop. So let
f1, . . . , fm : X → Y be such that p(ef1, . . . , efm) is defined using the di-
agram below.

X
(t1j(x1,...,xk),...,tnj(x1,...,xk))

��

gj

��

efj

��

W n Zoor
oo

f
// Y ′

We consider the pullback of e along f

Z ′
f ′
//

��

r′
��

Y
��

e
��

Z
f
// Y ′
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and the unique morphisms g′1, . . . , g
′
m : X → Z ′ satisfying f ′g′j = fj and

r′g′j = gj for each j ∈ {1, . . . ,m}. Then, considering the diagram

X
(t1j(x1,...,xk),...,tnj(x1,...,xk))

��

g′j
��

fj

��

W n Z ′oo
rr′
oo

f ′
// Y

we see that p(f1, . . . , fm) is defined, which concludes the proof.

Taking R to be the whole set of monomorphisms in C, we immediately
get the following corollary.

Corollary 4.2. Let T be a commutative algebraic theory andM an extended
matrix of terms in T . Let also C be a small finitely complete T -enriched ca-
tegory with M -closed relations. There exists a full and faithful T -enriched
embedding φ : C ↪→ PartC

op

M which preserves and reflects finite limits. Mo-
reover, for each monomorphism f : A� B and each X ∈ Cop, φ(f)X is a
closed monomorphism in PartM .

And now withR the set of strong monomorphisms.

Corollary 4.3. Let T be a commutative algebraic theory andM an extended
matrix of terms in T . Let also C be a small finitely complete T -enriched
category with M -closed strong relations. There exists a full and faithful
T -enriched embedding φ : C ↪→ PartC

op

M which preserves and reflects finite
limits. Moreover, for each strong monomorphism f : A � B and each
X ∈ Cop, φ(f)X is a closed monomorphism in PartM .

Remark 4.4. Notice that Corollaries 4.2 and 4.3 characterise categories with
M -closed relations (resp. with M -closed strong relations) among small fini-
tely complete T -enriched categories. Indeed, if we have such an embedding,
to prove that a (strong) relation r : R � An in C is M -closed, it is enough
to prove that φ(r)X is M -closed in PartM for all X ∈ Cop, which is true by
Proposition 3.12.
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5. Applications

Our embedding theorems give a way to reduce the proofs of some statements
in finitely complete T -enriched categories with M -closed strong relations to
the particular case of PartM as follows: Consider a statement P of the form
ψ ⇒ ω, where ψ and ω can be expressed as conjunctions of the conditions
that some finite diagrams are commutative, some finite cones are limit cones
and some equalities as t(f1, . . . , fr) = g hold where t is an r-ary term of
T and f1, . . . , fr, g are parallel morphisms. Then, P is valid in all finitely
complete T -enriched V-categories with M -closed strong relations (for all
universes V) if and only if it is valid in PartM (for all universes). Indeed,
in view of Proposition 3.12, the ‘only if part’ is obvious. Conversely, if C
is a finitely complete T -enriched category with M -closed strong relations,
we can consider it is small up to a change of universe. Therefore, by Corol-
lary 4.3, it suffices to prove P in PartC

op

M . Since every part of the statement
P is ‘componentwise’, it is enough to prove it in PartM . Note that the con-
ditions that some morphisms are monomorphisms, isomorphisms, or factor
through some given monomorphisms can also be expressed using finite li-
mits.

Similarly, to prove this statement P in all finitely complete T -enriched
categories with M -closed relations, it is enough to prove it in PartM (for all
universes) supposing that each monomorphism considered in the statement
P is closed.

Let us now give two concrete examples, the first one taking place in the
‘weakly strongly unital context’, i.e., for pointed finitely complete categories
with MStrUni-closed strong relations (see Example 2.3). This lemma has
been proved in [1] as Lemma 1.8.18 in the strongly unital case, we now
slightly improve it.

Lemma 5.1. Consider the following diagram in a pointed finitely complete
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category with MStrUni-closed strong relations

X ×R
1X×r1

��

1X×r2
��

R

r1

��

r2

��

X
(1X ,0)

//

h

((

X × Y
ψ
��

Y
(0,1Y )

oo

f
ww

Z
g

hhhh

where ψ(1X , 0) = h, ψ(0, 1Y ) = f , gh = 1X , gf = 0 and (r1, r2) is the
kernel pair of f . Then (1X × r1, 1X × r2) is the kernel pair of ψ.

Proof. By Corollary 4.3, it is enough to prove it in PartMStrUni
. First of all,

let us compute, for all x ∈ X and y ∈ Y

ψ(x, y) = ψ(p(x, 0, 0), p(0, 0, y))

= ψ(p((x, 0), (0, 0), (0, y)))

= p(ψ(x, 0), ψ(0, 0), ψ(0, y))

= p(h(x), 0, f(y))

which is always defined. Next, let x, x′ ∈ X and y, y′ ∈ Y be such that
ψ(x, y) = ψ(x′, y′). We have

x = p(x, 0, 0) = p(gh(x), 0, gf(y)) = g(ψ(x, y))

= g(ψ(x′, y′)) = p(gh(x′), 0, gf(y′)) = p(x′, 0, 0)

= x′

and

f(y) = ψ(0, y) = ψ(p(x, x, 0), p(y, 0, 0))

= ψ(p((x, y), (x, 0), (0, 0))) = p(ψ(x, y), ψ(x, 0), ψ(0, 0))

= p(ψ(x′, y′), ψ(x′, 0), ψ(0, 0)) = ψ(p(x′, x′, 0), p(y′, 0, 0))

= ψ(0, y′) = f(y′).

Then,
X ×R = {(x, y1, y2) ∈ X × Y × Y | f(y1) = f(y2)}
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in which p is defined componentwise. If (x, y1, y2) ∈ X ×R, we have

ψ(x, y1) = p(h(x), 0, f(y1))

= p(h(x), 0, f(y2))

= ψ(x, y2).

The kernel pair of ψ is given by

{(x, y, x′, y′) ∈ X × Y ×X × Y |ψ(x, y) = ψ(x′, y′)}

in which p is also defined componentwise. It is thus isomorphic to X × R
via the mutually inverse homomorphisms (x, y1, y2) 7→ (x, y1, x, y2) and
(x, y, x′, y′) 7→ (x, y, y′).

To conclude, we prove a well-known fact in Mal’tsev categories.

Proposition 5.2. (Theorem 2.2 in [4]) In a Mal’tsev category, every internal
category is a groupoid.

Proof. If

A = ( A1 ×c,d A1
m // A1

d //

c
// A0

e

ee
)

is an internal category, we have to prove that Iso(A) � A1 is an isomor-
phism where Iso(A) is the object of isomorphisms of A, constructed via a
limit of a finite diagram involving e, d, c and m. Thus, by Corollary 4.2, it is
enough to prove this statement in PartMMal

.
We write π1 and π2 for the projections of the pullback of c along d.

A1 ×c,d A1
π2 //

π1
��

A1

d
��

A1 c
// A0

Let us first prove that

A1 ×c,d A1
(π2,m)

// A1 × A1
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is a monomorphism. So let

X
f
//

f ′
// Y

g
// Z

be morphisms in A such that m(f, g) = m(f ′, g). Then

f = m(f, 1Y )

= m(p(f, 1Y , 1Y ), p(g, g, 1Y ))

= p(m(f, g),m(1Y , g),m(1Y , 1Y ))

= p(m(f ′, g),m(1Y , g),m(1Y , 1Y ))

= f ′

and (π2,m) is a monomorphism. We can therefore suppose it is closed (using
the last part of Corollary 4.2). Let us now prove that every map f : X → Y
in A is invertible (i.e., that Iso(A)� A1 is surjective). We know that

p((1Y , 1Y ), (f, 1Y ), (1X , f)) ∈ A1 ×c,d A1

is defined since p(1Y , 1Y , f) and p(1Y , f, f) are and (π2,m) is a closed mo-
nomorphism. Thus, applying π1, we deduce that p(1Y , f, 1X) is defined. It
remains to compute

d(p(1Y , f, 1X)) = p(Y,X,X) = Y,

c(p(1Y , f, 1X)) = p(Y, Y,X) = X,

m(f, p(1Y , f, 1X)) = m(p(f, 1X , 1X), p(1Y , f, 1X))

= p(m(f, 1Y ),m(1X , f),m(1X , 1X))

= p(f, f, 1X)

= 1X

and similarly for m(p(1Y , f, 1X), f) = 1Y . Therefore, Iso(A) � A1 is
bijective and can also be supposed to be closed. This means it is an isomor-
phism.
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